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Large deviation properties of on-off intermittency
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The large deviation property of on-off intermittency is investigated by introducing a two-dimensional piece-
wise linear map, which can be mapped to aninfinite Markov chain. It is shown that nonanalyticity, in the
q-weighted average of the portion of time spent in burst state, appears as asecond-orderphase transition for an
interval of control parameter with the bifurcation point of on-off intermittency as its end point.
@S1063-651X~99!07907-6#

PACS number~s!: 05.45.2a
io
e
o

ill
l
b

P
ic
a
of
st

o
ric

via
o
-

tio
o
,
a
n
a
le

s-

-

c-
nt

or

ly

ility,
on

an
I. INTRODUCTION

Intermittency is a highly non-Gaussian temporal behav
commonly observed in various fields of nonlinear scienc
In low-dimensional dynamical systems, intermittent chaos
type I, II, and III was established by Pomeau and Mannev
~PM intermittency! @1#. Also in low-dimensional dynamica
systems, another type of intermittency was first found
Fujisaka and Yamada in coupled chaotic oscillators@2#, and
is recently calledon-off intermittency@3#. This intermittency
has been attracting considerable attention. In contrast to
intermittency, which is associated with instability of period
orbits, on-off intermittency is observed when the chaotic
tractor, which is confined in an invariant sub-manifold
lower dimension than that of the full phase space, loses
bility in the transverse direction@4#. Although many studies
have been carried out on the universal characteristics of
off intermittency@5–8#, many features, such as its geomet
structures, are still to be understood.

The thermodynamic formalism based on the large de
tion theory@9# is useful to characterize ergodic properties
dynamical systems@10–12#. However, large deviation prop
erties of on-off intermittency@13# are also not fully under-
stood. In this paper, we shall discuss the large devia
property of the portion of time spent in burst state and sh
that there appears asecond-orderphase transition. In Sec. II
a model of on-off intermittency, which can be mapped to
infinite Markov chain, is introduced and its large deviatio
property is discussed in Sec. III. A summary and remarks
given in the last section. The Appendix contains detai
calculations.

II. MODIFIED RANDOM WALK MODEL

Let us consider anN-dimensional discrete dynamical sy
tem

H Xn115F~Xn ,Yn!,

Yn115G~Xn ,Yn!,
~1!
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where XPRNi, YPRN', and Ni1N'5N. Assume that
G(X,Y) is antisymmetric with respect toY, i.e.,

G~X,2Y!52G~X,Y!, ~2!

so that, G(X,0)50 and the system ~1! has the
Ni-dimensional invariant subspaceS[$(X,Y)uY50%. More-
over let us assume that the system

Xn115F~Xn,0!, ~3!

which is the motion restricted withinS, has a chaotic attrac
tor A with an ergodic natural invariant measure.

The linearized motion transverse toS along the dynamics
~3! on the chaotic attractorA is given by

dYn115DYG~Xn,0!dYn , ~4!

where dYn denotes the deviation transverse toS and
DYG(X,Y) denotes the tangent map ofG(X,Y) with respect
to Y at (X,Y). The transverse stability of this chaotic attra
tor A is determined bythe transverse Lyapunov expone
defined as

l'[ lim
n→`

1

n
log

udYnu
udY0u

, ~5!

which converges to a unique value for almost allX0 on A
anddY0Þ0 by the ergodic property of the chaotic attract
A.

If l',0, A is transversely stable, i.e., infinitesimal
small disturbance transverse toSdecay in time. Ifl'.0, A
is not transversely stable and does not have global stab
thus a qualitatively different motion appears. This transiti
of motion atl'50 is calledblow-out bifurcation@14#.

Chaotic behavior inDYG(Xn,0) leads to a nonuniform
growth ofdYn , i.e., the transverse disturbance may show
intermittent growth and decay in time. Ifl'.0 and there is
a global mechanism of reinjection towardA, on-off intermit-
tency is observed.
422 ©1999 The American Physical Society
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As a tractable model showing on-off intermittency, we introduce a two-dimensional piecewise linear map on@0,1#
3@21,1# with Ni5N'51 by

xn115H a21xn if 0<xn,a,

a821~12xn! if a<xn<1,
~6!

yn115H b21yn if 0<uynu,b, 0<xn,a,

byn if 0<uynu,b, a<xn<1,

sgn~yn!b821~12uynu! if b<uynu<1,
e
te

r

f

where 0,a,b,1, a8512a,b8512b, and sgn(x) denotes
the sign ofx. Note thatyn does not change its sign along th
orbit and thus, in the following, the phase space is restric
to @0,1#3@0,1#. The invariant submanifoldS is a unit inter-
val on y50 and the chaotic attractorA has the uniform
natural invariant density onS.

The transverse Lyapunov exponentl' of A is

l'5a logb211a8 logb5~2a21!logb21. ~7!

Thus the bifurcation point is ata5a0[1/2 andA is unstable
to the transverse disturbance fora.a0, and not an attracto
any more. A time series$yn% for a50.505 andb51/e is
shown in Fig. 1. As can be seen in Fig. 1, the model~6!
exhibits characteristics of on-off intermittency.

Let us define rectanglesRj
i ,@0,1#3@0,1# as

H Rj
0[@0,a!3~bj 11,bj #,

Rj
1[@a,1#3~bj 11,bj #,

j 50,1,2, . . . , ~8!

where ø i 50
1 ø j 50

` Rj
i 5@0,1#3@0,1# and Rj

i ùRj 8
i 85B if

( i , j )Þ( i 8, j 8). Since

T~Rj
i !5H Rj 12i 21

0 øRj 12i 21
1 if j Þ0,

ø i 50
1 øk50

` Rk
i if j 50,

~9!

whereT denotes the map~6!, the partitionR5$Rj
i % gives a

Markov partition.
Now consider piecewise constant functions such that

f ~x,y!5(
i 50

1

(
j 50

`

cj
i Rj

i ~x,y!, ~10!

where

FIG. 1. Time series ofy exhibiting on-off intermittency.
d
Rj

i ~x,y![H 1 if ~x,y!PRj
i ,

0 otherwise.
~11!

Operation of the Frobenius-Perron operatorH on f leads to

Hf ~x,y!5~c0
0ab81c0

1a8b8!(
j 50

`

Rj~x,y!

1(
j 51

`

@cj
0abRj 21~x,y!1cj

1a8b21Rj 11~x,y!#,

~12!

where Rj (x,y)[Rj
0(x,y)1Rj

1(x,y). Moreover, if f (x,y)
does not depend onx, i.e., cj

05cj
1[cj , then

Hf ~y!5c0b8(
j 50

`

Rj~x,y!

1(
j 51

`

cj@abRj 21~x,y!1a8b21Rj 11~x,y!#.

~13!

Let us denote the masses of the rectangles by

pj[~Rj f !5cj~Rj !5cjb8bj ~14!

and

pj8[~RjHf !, ~15!

where ~G! denotes*0
1dx*0

1dyG(x,y), then pj8 is explicitly
given as

pj85H apj 111a8pj 211b8bj p0 if j >2,

apj 111b8bj p0 if j 50,1,
~16!

which is equivalent to aninfinite Markov chain and thus we
call the system~6! the modified random walk model. I
a.a051/2, Eq.~16! has the stationary solution
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pj
s5H ~a2a8!b8/~122a8b8! for j 50,

p0
sb~a82ab!21$~a8/a! j2bj% for j >1,

~17!

where pj
s satisfies the normalization condition( j 50

` pj
s51

and the limit (a8/a)→b is taken in the casea85ab. By
using pj

s , the natural invariant densityr(x,y) of Eq. ~6! is
given as

r~x,y!5(
j 50

`

pj
s~Rj !

21Rj~x,y!. ~18!

III. SECOND-ORDER Q-PHASE TRANSITION

In order to investigate the intermittent property of on-o
intermittency, let us introduce the indicator of burst a
laminar by

u~X![R0~X!, ~19!

whereX denotes (x,y) and u(X)50 and 1 for the laminar
and burst states, respectively.

The portion of time spent in the burst state in a tim
interval of lengthn is given by

un~X![~1/n! (
k50

n21

u„Tn~X!…, ~20!

whereT denotes the map~6!. Moreover let us introduce the
thermodynamic structure functions@13,15# associated with
u(X) by

f~q![ lim
n→`

~1/n!log^enqun(X)&, ~21!

u~q![df~q!/dq5 lim
n→`

^un~X!enqun(X)&/^enqun(X)&,

~22!

and

x~q![d2f~q!/dq2

5 lim
n→`

n^$un~X!2u~q!%2enqun(X)&/^enqun(X)&,

~23!

where2`,q,` and^G(X)& denotes the average ofG(X)
with natural invariant densityr(X), i.e.,

^G~X!&5E dXr~X!G~X!5~rG!. ~24!

Note thatu(q) is aq-weighted average ofun(X) and enables
us to single out some characteristics of invariant sets c
tained in the chaotic attractor by changing the value oq
@15#.

After a calculation shown in the Appendix, we obtain t
following results. In the case of the critical regime, i.e.,a0
,a,ac[(11b2)21,

f~q!5H log~2Aaa8! for 2`,q,qc ,

log„l~q!… for qc<q,`,
~25!
n-

where qc5 log$2(Aaa82ab)/b8% and l(q) is an analytic
function, which is defined in the Appendix withl(qc)
52Aaa8, dl(qc)/dq50, andd2l(qc)/dq252Aaa8b22(b
2Aa8/a)2. Thus, as shown in Fig. 2, the derivativex(q) of
the q-weighted averageu(q) has a discontinuity atq5qc ,
exhibiting asecond-order q-phase transition. The fluctuatio
spectrumS(u) is shown also in Fig. 2, whereS(u) is related
to f(q) with the Legendre transformation

f~q!5max
u

$qu2S~u!% or S~u!5max
q

$qu2f~q!%.

~26!

The transition pointqc→2` asa→ac20 and the nonana
lyticity disappears, on the other hand,qc→020 asa→a0
10.

Since u(q50)5^u&5p0
s5(a2a8)b8/(122a8b8)}e,

S(u50)52f(q52`)52 log(2Aaa8)}e2, for small e
[a2a0.0, andS(u) is parabolic aroundu5^u&, a scaling
S(u).e2s(u/e) for 0<u<^u& and u.^u& with small
u/^u&. Similar scaling has been found to hold in the mul
plicative stochastic model of on-off intermittency@13#.

As shown in the Appendix, the transition atqc is brought
about by the disappearance of the discrete eigenvalue o
generalized Frobenius-Perron operator associated
un(X). The eigenvector for the discrete eigenvalue is loc
ized and may be contributed by localized invariant se
where the orbit elements visitR05R0

0øR0
1 repeatedly,

whereas the eigenvectors for the continuous eigenva
have the wavelike form spreading overRj5Rj

0øRj
1 ( j

50,1,2, . . . ) and may becontributed by the invariant sets
where the orbit elements travels overRj ( j 50,1,2, . . . ) un-
boundedly. Thus the transition atqc may be interpreted as
the transition between the two modes of motions of localiz
and unbounded.

In the case of the normal regime, i.e.,ac<a,1, f(q)
and thusu(q) and x(q) are analytic for allq, as shown in
Fig. 3. As shown in the Appendix, in this case, only t
discrete eigenvalue contributes and no transition takes pl

IV. SUMMARY AND CONCLUDING REMARKS

A simple model of on-off intermittency, the modified ran
dom walk model, is introduced to study large deviation pro
erties of on-off intermittency. It is shown that a second-ord
q-phase transition inu(q) appears for an interval of contro
parameter with the bifurcation point of on-off intermittenc
as its end point. This point contrasts with the first-ord
q-phase transitions at the bifurcation points of chaos@12# and
the onset point of type I PM intermittency@16,17#, where
q-phase transitions are seen only at just before or after
bifurcation points.

The second-orderq-phase transition is considered to be
characteristic of on-off intermittency. Indeed, similar calc
lation performed on the solvable model of on-off interm
tency proposed by Hata and Miyazaki@6# leads to a similar
second-orderq-phase transition. As shown by Fujisaka a
Yamada @13#, the second-orderq-phase transition is also
seen in the multiplicative stochastic model of on-off inte
mittency.

On-off intermittency shows another kind ofq-phase tran-
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FIG. 2. Thermodynamic structure functions of the modified random walk model in the critical regime witha50.6 andb51/A3. x(q)
shows a discontinuity atq5qc520.160 712, exhibiting a second-order phase transition atq5qc .
of
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sition as seen in the solvable map of on-off intermittency@6#.
The natural invariant density given by Eq.~18! with Eq. ~17!
leads to the singularity spectrum@18,10#

f ~a!5H 21~a22!/~22a0! if a0<a<2,

2` otherwise,
~27!

where a0511min$1,log(a8/a)/logb%, exhibiting a linear
slope @6#, i.e., q-phase transition, fora0,a,(11b)21, as
shown in Fig. 4. Note that, since (11b)21,ac5(1
1b2)21, q-phase transition inu(q) is observed before the
appearance ofq-phase transition inf (a) if the control pa-
rameter is changed toward the bifurcation point of on-
intermittency. The understanding of geometric structures
on-off intermittency may be needed to clarify the relati
between theseq-phase transitions. Finally let us mentio
that, as in our model, on-off intermittency has a close re
tionship with random walks and, as discussed by Rad
@19#, the problem of thermodynamic formalism of rando
walks contains the second-order phase transitions.
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APPENDIX: CALCULATION OF f„Q…

Let Mq(n)[^enqun(X)&. Then

Mq~n!5E dXr~X!expH q(
k50

n21

u„Tk~X!…J
5E dX@Hequ#nr~X!, ~A1!

where

@Hequ#G~X![E dYd„X2T~Y!…equ(Y)G~Y!. ~A2!

Since we are considering the map~6! andu(X)5R0(X), for
a piecewise constant functionf (y)5( j 50

` cjRj (x,y),

@Hequ# f ~y!5c0b8eq(
j 50

`

Rj~x,y!

1(
j 51

`

@abRj 21~x,y!1a8b21Rj 11# ~A3!

5 (
k50

`

(
l 50

`

~ f Rl !@Pq# lk~Rk!
21Rk~x,y!,

~A4!
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FIG. 3. Thermodynamic structure functions of the modified random walk model in the normal regime witha50.95 andb51/A3.
-

s are
wherePq has the form

Pq5S b8 a

b8b 0 a 0

b8b2 a8 0 a

b8b3 a8 0 a

A 0 � � �

D
3S eq

1 0

1

0 1

�

D ~A5!

andP0 defines an infinite Markov chain. By using Eqs.~18!
and ~A4!, Eq. ~A1! leads to

Mq~n!5 (
k50

`

(
l 50

`

@Pq
n#klpl

s . ~A6!

In order to investigaten dependence ofMq(n), let us
consider the eigenvalue problem ofPq . First, we construct a
finite Markov chain by approximatingP0 with anm3m ma-
trix
P0
(m)51

b(m) a 0

b(m)b 0 a 0 0

b(m)b2 a8 0 a 0

b(m)b3 a8 0 a 0

A � � � A

b(m)bm23 a 0 a 0

b(m)bm22 0 a8 0 1

b(m)bm21 a8 0

2 ,

~A7!

where b(m)5(12bm)/b8, and Pq
(m) is naturally introduced

by multiplying anm3m diagonal matrix with diagonal ele
ments (eq,1,1, . . . ,1) as in Eq.~A5!. The left eigenequation
of Pq

(m) reads

eqb(m) (
i 50

m21

biv i 215lv0 , ~A8!

av i 211a8v i 115lv i , i 51, . . . ,m22, ~A9!

vm225lvm21 , ~A10!

wherel denotes the eigenvalue and (v0 ,v1 , . . . ,vm21) de-
notes the eigenvector. Since real and positive eigenvalue
interested,l.0 is assumed in the following. For a givenl,



.

.
f

al

the

. In

re

PRE 60 427LARGE DEVIATION PROPERTIES OF ON-OFF . . .
v i5am1
i 1bm2

i , i 50,1, . . . ,m21, ~A11!

with

m65
l6Al224aa8

2a8
~A12!

and constantsa andb, satisfies Eq.~A9!, thus Eqs.~A8! and
~A10! lead to

aS eqb(m)
12bmm1

m

12bm1
2l D 1bS eqb(m)

12bmm2
m

12bm2
2l D 50,

~A13!

am1
m22~12lm1!1bm2

m22~12lm2!50, ~A14!

and furthermore,

b~m2 /m1!m22~12lm2!S eqb(m)
12bmm1

m

12bm1
2l D

5b~12lm1!S eqb(m)
12bmm2

m

12bm2
2l D . ~A15!

If l.2Aaa8, thenm1.Aa/a8.m2.0 and, in the limit of
m→`, Eq. ~A15! leads to

eqb8

12bm2
5l, ~A16!

by abandoning nonphysical solutionsb50 andlm151, be-
cause the left-hand side of Eq.~A15! goes to 0. Since Eq
~A12! is equivalent to

am2
211a8m25l, 0<m2<Aa/a8, ~A17!

the eigenvaluel is given by the intersecting point of Eqs
~A16! and ~A17! on them2-l plane as shown in Fig. 5. I
b,Aa8/a andq,qc[ log$2(Aaa82ab)/b8%, there is no ei-
genvalue greater than 2Aaa8. Otherwise, by eliminatingm2

in Eqs.~A16! and ~A17!, the eigenvalue is given as the re
root of

FIG. 4. Singularity spectrum of the invariant measure for
modified random walk model witha50.55 andb51/A3. f (a) has
a linear slope fora0.1.365<a<2.
bl32~eqbb81ab21a8!l212eqa8b8l2~eqb8!2a850,

~A18!

which has a unique real rootl(q) greater than 2Aaa8 as it
can be seen form Fig. 5.

If l<2Aaa8, by introducinguP@0,p#, m6 can be ex-
pressed asm65Aa/a8e6 iu and l52Aaa8cosu. Without
loss of generality, we can seta5b215eic with real c. Eq.
~A13! leads to

ReH eicS eqb(m)
12bm~a/a8!m/2eimu

12bAa/a8eiu
22Aaa8 cosu D J 50,

~A19!
which is satisfied with

c5
p

2

2argH S eqb(m)
12bm~a/a8!m/2eimu

12bAa/a8eiu
22Aaa8 cosu D J .

~A20!
Equation~A14! leads to

a8 cos~c1~m22!u!5a cos~c1mu!, ~A21!

which hasm or m21 solutions with respect tou. u ’s satis-

FIG. 5. l versusm2 in the critical ~a! and normal~b! regime.
The crossing point of the two curves determines the eigenvalue
the critical regime, there is no crossing point satisfyingm2

<Aa/a8 for q,qc ; on the other hand, in the normal regime, the
is a crossing point for allq.
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fying Eq. ~A21! almost uniformly range over@0,p#; thus, in
the limit of m→`, a band of continuous eigenvalues ov
@22Aaa8,2Aaa8# is formed.

By estimatingMq(n) with the largest eigenvaluelmax(q)
of Pq asMq(n);„lmax(q)…n, f(q) shown in Sec. III is ob-
tained. In the normal regimeb>Aa8/a, i.e., a>ac5(1
1b2)21, no eigenvalue in the band of continuous eigenva
does not contribute tof(q), whereas, in the critical regim
om

,

s
-

r

e

a051/2,a,ac , the largest eigenvalue in the band of co
tinuous eigenvalue determinesf(q) for q,qc .

Note that for each eigenvector considered abo
u( i 50

` v i pi
su,` holds, becausea→0 asm→` by Eq. ~A14!

if l.2Aaa8, and the largest eigenvalue determinesf(q). It
is not the case, but, ifu( i 50

` v i pi
su,` is not guaranteed, ther

is a possibility that not only the largest eigenvalue det
mines the growth rate ofMq(n) @19#.
s.
e,

r.

.
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