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Large deviation properties of on-off intermittency
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The large deviation property of on-off intermittency is investigated by introducing a two-dimensional piece-
wise linear map, which can be mapped toiafinite Markov chain. It is shown that nonanalyticity, in the
g-weighted average of the portion of time spent in burst state, appearseasrd-ordephase transition for an
interval of control parameter with the bifurcation point of on-off intermittency as its end point.
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. INTRODUCTION where XeRM, YeRM:, and Nj+N, =N. Assume that
G(X,Y) is antisymmetric with respect 19, i.e.,

Intermittency is a highly non-Gaussian temporal behavior
commonly observed in various fields of nonlinear sciences. G(X,—Y)=—-G(X,Y), 2
In low-dimensional dynamical systems, intermittent chaos of
type 1, 11, and 11l was established by Pomeau and Mannevilles®  that, G(X,0)=0 and the system(1) has the
(PM intermittency [1]. Also in low-dimensional dynamical Nj-dimensional invariant subspage={(X,Y)|Y=0}. More-
systems, another type of intermittency was first found byover let us assume that the system
Fujisaka and Yamada in coupled chaotic oscillaf@is and
is recently callecbn-off intermittency3]. This intermittency Xn+1=F(Xp,0), ©)
has been attracting considerable attention. In contrast to PM =~ ) ) " _
intermittency, which is associated with instability of periodic Which is the motion restricted withi§ has a chaofic attrac-
orbits, on-off intermittency is observed when the chaotic atfor - with an ergodic natural invariant measure. ,
tractor, which is confined in an invariant sub-manifold of _ The linearized motion transverse $mlong the dynamics
lower dimension than that of the full phase space, loses std3) On the chaotic attractad is given by
bility in the transverse directiofd]. Although many studies
have been carried out on the universal characteristics of on- 6Yn+1=DyG(Xn,0)8Y, )

off intermittency[5—8], many features, such as its geometric .
structures areys[till tc]) be ur):derstood g where &Y, denotes the deviation transverse ® and

The thermodynamic formalism based on the large deviaDYG(X'Y) denotes the tangent map G{X, Y) with respect

tion theory[9] is useful to characterize ergodic properties of ©© Y @t (X,Y). The transverse stability of this chaotic attrac-

dynamical systemELO—12. However, large deviation prop- tor _A is determined bythe transverse Lyapunov exponent

erties of on-off intermittency13] are also not fully under- defined as

stood. In this paper, we shall discuss the large deviation 1

property of the portion of time spent in burst_ state and show A, =lim = log

that there appearsseecond-ordephase transition. In Sec. Il, noo N

a model of on-off intermittency, which can be mapped to an

infinite Markov chain, is introduced and its large deviation which converges to a unique value for almost>&}l on A

property is discussed in Sec. lll. A summary and remarks arand 5Y,#0 by the ergodic property of the chaotic attractor

given in the last section. The Appendix contains detailed4.

calculations. If N\, <0, A is transversely stable, i.e., infinitesimally

small disturbance transverse3alecay in time. I, >0, A

is not transversely stable and does not have global stability,

thus a qualitatively different motion appears. This transition

Let us consider aiN-dimensional discrete dynamical sys- Of motion at\, =0 is calledblow-out bifurcation[14].

tem Chaotic behavior inDyG(X,,0) leads to a nonuniform
growth of 8Y,,, i.e., the transverse disturbance may show an
intermittent growth and decay in time. Af, >0 and there is

Xn+1=F(Xn, Yn), 1) a global mechanism of reinjection towart] on-off intermit-
Yni1=G(X,,Yn), tency is observed.

| 8Y |
[8Yol’

©)

— 00

II. MODIFIED RANDOM WALK MODEL
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As a tractable model showing on-off intermittency, we introduce a two-dimensional piecewise linear nmi@pljon
X[=1,1] with Ny=N, =1 by

a~'x, if 0=x,<a,
Xn+1™= a/*l(l_xn) if a$Xn$l,
-1 . (6)
b™y, if 0<|y,<b, O0=x,<a,
—{ b¥ it 0<ly<b, asx,<1,
Yn+1™
sgriy)b’ “1(1-ly,) ¥ D=lyal<L,
|
where 0<a,b<1,a’=1-ab’=1-b, and sgnf) denotes | 1 if(xy)eR],
the sign ofx. Note thaty,, does not change its sign along the R}(x,y) (11)

orbit and thus, in the following, the phase space is restricted 0 otherwise.

to [0,1]X[0,1]. The invariant submanifol& is a unit inter-
val on y=0 and the chaotic attractad has the uniform Operation of the Frobenius-Perron operatpon f leads to
natural invariant density o8
The transverse Lyapunov exponent of A is o
HE(x,y)=(clab’+cia’'b’) D Ri(x,y)
A, =alogb '+a’logb=(2a—1)logb™ 1. (7) (xy)=( ° JZO iy

Thus the bifurcation point is @&=ay=1/2 andA is unstable
to the transverse disturbance @r a,, and not an attractor
any more. A time serie$y,} for a=0.505 andb=1/e is
shown in Fig. 1. As can be seen in Fig. 1, the mo@&I
exhibits characteristics of on-off intermittency.
Let us define rectangle®;C[0,1]X[0,1] as where R]-(x,y)ER?(x,y)+le(x,y). Moreover, if f(x,y)
does not depend ox i.e.,c’=ci=c;, then

+J§1 [cfabR _;(x,y)+cja’b 'R 1(x,y)],

(12

R'=[0.a)x (bl*%,b!],
j=012..., (8

Ri=[a,1]x(bi*! bi], =

: HE(y)=cob’ JEO Rj(X.y)
where Ul_oU;_,Ri=[0,1]x[0,1] and RN R; =7 if
(,j)#(i’,j"). Since

+2 cflabR_a(xy) +a'b 'Ry a(xy)].
R?+2i—1U le+2i—1 if j#0,

T(R)= .
(R Ui oUk=oRi if j=0,

9 (13

whereT denotes the mafb), the partitionR={R}} gives a Let us denote the masses of the rectangles by

Markov partition

Now consider piecewise constant functions such that pi=(R;f)=c;(R))=c;b'b’ (14
i and
foy)=2 2 ciRj0uy), (10
pj=(RyHf), (15)
where

where (G) denotes[gdx/gdyG(x,y), thenp/ is explicitly
given as

1
08
Lo 0.6 , apj+l+a,p]—1+b,bjp0 |f J>2, 16
0s P~ apy1+brbipg =01, 0
0 1
0 5000 10200 15000 20000 which is equivalent to ainfinite Markov chain and thus we

call the system(6) the modified random walk model. If
FIG. 1. Time series of exhibiting on-off intermittency. a>ay=1/2, Eq.(16) has the stationary solution
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(a—a')b’'/(1—-2a’'b’) for =0,

" | pSb(a’—ab)~Y{(a'/a)—bl} for j=1, 17

P}

where p} satisfies the normalization condition;” opj=1
and the limit @'/a)—b is taken in the casa’=ab. By
using pjs, the natural invariant density(x,y) of Eq. (6) is
given as

pOxY) =24 Pi(R) R (X.Y). (18

Ill. SECOND-ORDER Q-PHASE TRANSITION
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where g.=log{2(Jaa’ —ab)/b’} and \(q) is an analytic
function, which is defined in the Appendix with(q.)
=2\aa’, d\(q.)/dg=0, andd®\(q,)/dg?=2\aa’b %(b
—a’la)?. Thus, as shown in Fig. 2, the derivatiy¢q) of
the g-weighted average(q) has a discontinuity afj=q.,
exhibiting asecond-order gphase transition. The fluctuation
spectrumS(u) is shown also in Fig. 2, wherg(u) is related
to ¢(q) with the Legendre transformation

S(u)=maxqu—¢(q)}.

#(q)=maxqu—S(u)} or
q (26)

The transition poingj,— —« asa—a,—0 and the nonana-

In order to investigate the intermittent property of on-off Iyticity disappears, on the other hang,—0—0 asa—ag
intermittency, let us introduce the indicator of burst and+0Q.

laminar by

u(X)=Ro(X), (19

where X denotes X,y) andu(X)=0 and 1 for the laminar

and burst states, respectively.

Since u(g=0)=(u)=pj=(a—a’)b’/(1—2a’b’)xe,
S(u=0)=—¢(q=—»)=—log(2y/aa’)xe?, for small e
=a—ap>0, andS(u) is parabolic aroundi=(u), a scaling
S(u)=e€?a(ule) for O<u<(u) and u>(u) with small
u/(u). Similar scaling has been found to hold in the multi-

The portion of time spent in the burst state in a timePlicative stochastic model of on-off intermittengy3].

interval of lengthn is given by
n-1

un<><>z<1/n>k§0 u(T(X)), (20)

whereT denotes the maf®6). Moreover let us introduce the

thermodynamic structure functio43,15 associated with
u(X) by

#(g)= lim (1/n)log(e"a (X)), (21)
u(g)=de(q)/dg= lim (uy(X)e"9%hX))/(endth(X)y
- (22)
and
x(a)=d?¢(a)/dq?
= lim n{{u,(X) - u(q)}ze”qun(x)>/<enqun(x)>’
(23

where—o<g<e and{G(X)) denotes the average &f( X)
with natural invariant density(X), i.e.,

(G(X))= J dXp(X)G(X)=(pG). (24

Note thatu(q) is ag-weighted average af,(X) and enables

As shown in the Appendix, the transition @t is brought
about by the disappearance of the discrete eigenvalue of the
generalized Frobenius-Perron operator associated with
u,(X). The eigenvector for the discrete eigenvalue is local-
ized and may be contributed by localized invariant sets,
where the orbit elements visiR,=RJUR} repeatedly,
whereas the eigenvectors for the continuous eigenvalues
have the wavelike form spreading ov&=RUR] (j
=0,1,2...) and may beontributed by the invariant sets,
where the orbit elements travels oy (j=0,1,2 ...) un-
boundedly. Thus the transition gt may be interpreted as
the transition between the two modes of motions of localized
and unbounded.

In the case of the normal regime, i.e,<a<1, ¢(q)
and thusu(q) and x(q) are analytic for allg, as shown in
Fig. 3. As shown in the Appendix, in this case, only the
discrete eigenvalue contributes and no transition takes place.

IV. SUMMARY AND CONCLUDING REMARKS

A simple model of on-off intermittency, the modified ran-
dom walk model, is introduced to study large deviation prop-
erties of on-off intermittency. It is shown that a second-order
g-phase transition imi(q) appears for an interval of control
parameter with the bifurcation point of on-off intermittency
as its end point. This point contrasts with the first-order
g-phase transitions at the bifurcation points of chid®g and
the onset point of type | PM intermittendy.6,17], where
g-phase transitions are seen only at just before or after the
bifurcation points.

us to single out some characteristics of invariant sets con- The second-ordeg-phase transition is considered to be a
tained in the chaotic attractor by changing the valueqof characteristic of on-off intermittency. Indeed, similar calcu-

[15].

lation performed on the solvable model of on-off intermit-

After a calculation shown in the Appendix, we obtain thetency proposed by Hata and Miyaz4Ki leads to a similar

following results. In the case of the critical regime, i.&,
<a<a,=(1+b?1,
log(2yaa') for —e<q<qg,

- 25
a log(\(q))  forg,=q<ce, 5

second-ordeg-phase transition. As shown by Fujisaka and
Yamada[13], the second-ordeg-phase transition is also
seen in the multiplicative stochastic model of on-off inter-
mittency.

On-off intermittency shows another kind gfphase tran-
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FIG. 2. Thermodynamic structure functions of the modified random walk model in the critical regimewité andb=1/y/3. x(q)
shows a discontinuity aj=q.= —0.160 712, exhibiting a second-order phase transition=adj .

APPENDIX: CALCULATION OF ¢(Q)
Let Mg(n)=(e"4%X) Then

sition as seen in the solvable map of on-off intermittef&ly
The natural invariant density given by EH3.8) with Eq. (17)

leads to the singularity spectruf8,10
n—1

2+ (a—2)I(2—aq) if ag<a<2, Mq(n)=Jpr(X)eX[4q2 u(T(X))
k=0

fla)= (27)

— o0 otherwise,

| o - [ axpren o, (A1)
where ay=1+min{1,log@’/a)/logb}, exhibiting a linear

slope[6], i.e., g-phase transition, foag<a<(1+b) !, as

shown in Fig. 4. Note that, since ¢b) l<a.=(1 Where
+b? 1, g-phase transition iru(q) is observed before the
appearance of-phase transition irf («) if the control pa-

rameter is changed toward the bifurcation point of on-off
intermittency. The understanding of geometric structures of o
on-off intermittency may be needed to clarify the relationSince we are considering the me§) andu(X) =Ry(X), for
between these-phase transitions. Finally let us mention & Piecewise constant functidify) = =_ o¢;R;(x,y),

that, as in our model, on-off intermittency has a close rela-

tionship with random walks and, as discussed by Radons qu . :

[19], the problem of thermodynamic formalism of random L[7€"1f(y)=cob’e JZO R(x,y)

walks contains the second-order phase transitions.

[Heq“]G(X)EJ dYS(X—T(Y))eM"MG(Y). (A2)

[

+2, [abR_1(xy)+a'b 'Rj14]  (A3)
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FIG. 3. Thermodynamic structure functions of the modified random walk model in the normal regima=\0t95 andb=1/y/3.

whereP has the form (M a 0
. b™b 0 a 0 0
a
ob 0 0 biMh?2 a’ 0 a 0
! a
b(Mp3 a 0 a 0
P=| b’b> & 0 a p{m = . S 1,
b'b® a 0 a ' o '
b(Mpm-3 a 0 a 0
0 b(Mp™-2 0 a’ 1
el b(m)bm—l a o0
1 0 (A7)
X 1 (AS)  \whereb™=(1—bM)/b’, and P{"™ is naturally introduced
0 1 by multiplying anmx m diagonal matrix with diagonal ele-

ments €%,1,1,...,1) as in EqLA5). The left eigenequation
of P{"™ reads

and P, defines an infinite Markov chain. By using Eq$8) m-1
and(A4), Eq. (Al) leads to edp(m Z biv,_,=\vg, (A8)
i=o0
Mq(n):kZOI_EO[Pqn]klpf- (A6) aviyta'vi i =Av;, 1=1,...m=2,  (A9)
Um—2=AUm-1, (A10)

In order to investigaten dependence oM,(n), let us
consider the eigenvalue problemm®f . First, we constructa where\ denotes the eigenvalue angy(v, . .. vm-1) de-
finite Markov chain by approximatingy, with anmxXm ma-  notes the eigenvector. Since real and positive eigenvalues are
trix interested)\ >0 is assumed in the following. For a given
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f (o)

FIG. 4. Singularity spectrum of the invariant measure for the 4

modified random walk model with=0.55 andb=1/\/3. f(a) has
a linear slope forg=1.365<a<2.

vi=ap, +But, i=01,...m-1, (All)
with
A+ N°—4aa’
M= (A12)

2a’

and constante and g, satisfies Eq(A9), thus Eqs(A8) and
(A10) lead to

1-bMuT 1-b™u™
al et — "\ |4 plespm——= )\ |=p,
1-bu, P 1-bu_
(A13)
ap (1= )+ Bu™ A(1-Au_)=0, (Ald)
and furthermore,
1_bmﬂm
m-2.49 _ qpm —__— 7+
Bl lp )™ (1 M-)(eb T=ba, A)
qb(m)l—bm,urf
=B(1-Ap,)| € m—k . (Al15)

If \>2yaa’, thenu,>+al/a’>u_>0 and, in the limit of
m—oo, Eq. (A15) leads to

—eqb, =\ Al6
l_blu,, AR ( )

by abandoning nonphysical solutiofs=0 andA . =1, be-
cause the left-hand side of EGA15) goes to 0. Since Eq.
(A12) is equivalent to

Osu_<+ala’,

the eigenvaluen is given by the intersecting point of Egs.
(A16) and (A17) on theu_-\ plane as shown in Fig. 5. If
b<a'/a andq<q.=log{2(Jaa’ —ab)/b’}, there is no ei-
genvalue greater thany2a’. Otherwise, by eliminating.

ap”t+a u_=A, (A17)

in Egs.(A16) and(Al7), the eigenvalue is given as the real

root of
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2.Jaa’

2./aa’

FIG. 5. A versusu _ in the critical (a) and normal(b) regime.
The crossing point of the two curves determines the eigenvalue. In
the critical regime, there is no crossing point satisfyipg
<\fa/a’ for q<q.; on the other hand, in the normal regime, there
is a crossing point for akj.

bA3— (eYbb’ +ab?+a’)\2+2e%’b’\ — (e%’)2a’ =0,
(A18)

which has a unique real roat(q) greater than gaa’ as it
can be seen form Fig. 5.

If A<2+aa’, by introducingfe[0,7], u. can be ex-
pressed asu.=+a/a’e”'? and A=2+aa’cos. Without
loss of generality, we can set=8"'=¢'" with real 4. Eq.
(A13) leads to

Re{ e””( ep(m

1— bm(a/a/)m/ZGimH

1—-ba/a’'e'’?

—24aa’ cos&) ] =0,

(A19)
which is satisfied with
. aa
V=2
1— bm ala’ m/2eim(}
—arg | e%9b(m (a/a’) — —2.\aa’ cosd| ;.
1-byala’e'’?
(A20)
Equation(Al4) leads to
a’' coq ¥+ (m—2)0)=acog s+ mb), (A21)

which hasm or m—1 solutions with respect t6. 's satis-
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fying Eq. (A21) almost uniformly range ovdi0,7]; thus, in  ay=1/2<a<a,, the largest eigenvalue in the band of con-
the limit of m—o, a band of continuous eigenvalues overtinuous eigenvalue determinégq) for q<q..
[-2aa’,2/aa’] is formed. Note that for each eigenvector considered above,
By estimatingM4(n) with the largest eigenvalugnq,(a)  |2iovip;] <= holds, because—0 asm—c by Eq.(A14)
of Pq asMg(n)~(\mafa))", ¢(q) shown in Sec. Ill is ob- if A>2+/aa’, and the largest eigenvalue determiges)). It
tained. In the normal regimé=.a’/a, i.e.,, a=a.,=(1 is notthe case, but, [E;_v;p;| < is not guaranteed, there
+b?) 71, no eigenvalue in the band of continuous eigenvaluds a possibility that not only the largest eigenvalue deter-
does not contribute te(q), whereas, in the critical regime mines the growth rate d¥14(n) [19].
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